
The Intersection of Insertion and Deletion Balls
Daniella Bar-Lev∗, Omer Sabary†, Yotam Gershon‡, and Eitan Yaakobi∗

∗ Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 3200003 Israel
† Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA

‡ Department of Electrical Engineering, Technion — Israel Institute of Technology, Haifa, 3200003 Israel

Emails: {daniellalev,yaakobi}@cs.technion.ac.il, osabary@ucsd.edu, yotamgr@campus.technion.ac.il

Abstract—This paper studies the intersections of insertion and
deletion balls. The t-insertion, t-deletion ball of a sequence x
is the set of all sequences received by t insertions, deletions to
x, respectively. While the intersection of either deletion balls or
insertion balls has been rigorously studied before, the intersection
of an insertion ball and a deletion ball has not been addressed so
far. We find the maximum intersection size of any two insertion
and deletion balls in the binary case. For the special case of one-
insertion and one-deletion balls we find the intersection size for all
pair of sequences. Then, we derive the largest and average values of
this intersection size. Lastly, we present an algorithm that efficiently
computes the intersection of any t1-insertion ball and t2-deletion
ball.

I. INTRODUCTION

Studying the size of the deletion and insertion balls as well as
their intersections is the one of the more intriguing combinatorial
problems in the area of coding for synchronization channels. The
radius-t deletion ball of some sequence x is defined to be the set
of all sequences that can be derived from x by exactly t deletions.
Similarly the radius-t insertion ball of x is the set of all words that
can be received by t insertions to x. While it is well known that
the insertion balls are regular, that is, the ball size does not depend
on the center word x, the deletion balls sizes indeed depend on
the center x [10]. In particular, the minimum size of the deletion
ball is achieved when x consists of a single symbol, while the
maximum size is received only for the alternating words.

Studying [4], [12], [17] the intersection of deletion and inser-
tion balls has several applications. For example, the largest size
of these intersections provide the solution for the sequence recon-
struction problem, which was first studied by Levenshtein [11],
[12], for insertion and deletion channels. These largest sizes
correspond to the required minimum number of channels when
transmitting a codeword over several deletion or insertion chan-
nels. These problems have also connection to the generalized
Gilbert-Varshamov bound [8], associative memories [9], [19], and
list decoding [5], [13], [18]. One of the motivations to specifically
study the intersection of a deletion ball together with an insertion
ball originates from a recent problem we addressed in [14].
Assume a sequence x is transmitted over two channels, where the
first introduces deletions while the second only insertions. In order
to find the list of all possible transmitted sequences, it is necessary
to find the intersection of the insertion ball of the first channel’s
output and the deletion ball of the second channel’s output.
While significant progress has been accomplished in studying
the intersections of either deletion balls or insertion balls, to the
best of our knowledge there is no study that consider together
the intersection of insertion and deletion balls, which is the goal
of this paper. Lastly, we note that studying the intersection of
insertion and deletion balls contributes also to studying the balls
in the Levenshtein metric and the intersection of these balls [2],
[15], [16].

The rest of the paper is organized as follows. Section II
presents the definitions used throughout the paper, a necessary

and sufficient condition for the intersection of an insertion and
a deletion to be nonempty, and the problems that will be solved
in the paper. In Section III we study the maximum size of a t1-
insertion ball and a t2-deletion ball for the binary case. Section IV
addresses the case of one-insertion and one-deletion balls. We find
the intersection size for all words y1 and y2 such that y1 is a
subsequence of y2 for non-binary case. Based on this result we
also derive the largest intersection size and the average size of this
intersection. Lastly, in Section V we present an efficient algorithm
to compute the intersection of two insertion and deletion balls. It
is shown how to improve upon a naive solution computes first the
deletion and insertion balls of the two sequences and then find
their intersection. Due to the lack of space, some of the proofs
in the paper are omitted.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let Σq denote the set of integers {0, 1, . . . , q − 1} and for an
integer n ≥ 0, let Σnq be the set of all sequences (words) of length
n over the alphabet Σq . For an integer t, 0 ≤ t ≤ n, a sequence
y ∈ Σn−tq is a t-subsequence of x ∈ Σnq if y can be obtained
from x by deleting t symbols from x. That is, there exist n− t
indices 1 ≤ i1 < i2 < · · · < in−t ≤ n such that yj = xij , for
all 1 ≤ j ≤ n− t. We say that y is a subsequence of x if y is a
t-subsequence of x for some t. Similarly, a sequence y ∈ Σn+t

q

is a t-supersequence of x ∈ Σnq if x is a t-subsequence of y.
For a sequence x ∈ Σnq , let x[i,j] be the subsequence

xixi+1 · · ·xj and for a set of indices U ⊆ {1, . . . , n}, the
sequence xU is the projection of x on the indices of U , which
is the subsequence of x received by the symbols in the entries
of U . For x,y ∈ Σ∗q , the Levenshtein distance between x and y,
dL(x,y), is the smallest number of insertions and deletions that
is required to transform x into y.
Definition 1. The t-deletion ball centred at x ∈ Σnq , Dt(x) ⊆
Σn−tq , is the set of all t-subsequences of x. The t-insertion
ball centred at x ∈ Σnq , It(x) ⊆ Σn+t

q , is the set of all t-
supersequences of x.

For a sequence x ∈ Σnq , a run of x is a maximal subsequence
x[i,j] of identical symbols. The number of runs in x is denoted
by ρ(x). We say that x[i,j] is an alternating segment if x[i,j]

is a sequence of alternating distinct symbols σ, σ′ ∈ Σq . Note
that x[i,j] is a maximal alternating segment if x[i,j] is an
alternating segment and x[i−1,j],x[i,j+1] are not. For example,
for x = 00110121, ρ(x) = 5 and the four maximal alternating
segments are 0, 01, 101, 121.

In this work we study the insertion-deletion intersection prob-
lem. In this problem we let y1,y2 ∈ Σ∗q and n ∈ N such that
|y1| ≤ n ≤ |y2| and the goal is to find the set of all words x ∈ Σnq
such that x is both, a supersequence of y1 and a subsequences
of y2. That is, to find the set

ID(y1,y2, n) , In−|y1|(y1) ∩D|y2|−n(y2).

The following lemma states a necessary and sufficient condition
for ID(y1,y2, n) = ∅.

Lemma 1. Let y1,y2 ∈ Σ∗q , and let n be an integer such that
|y1| ≤ n ≤ |y2|. Then, ID(y1,y2, n) 6= ∅ if and only if y1 is a
subsequence of y2.

Proof: Let δ , |y2| − |y1|. Since |y1| ≤ |y2|, we must
perform at least δ insertions in order to transform y1 into y2,
and hence dL(y1,y2) ≥ δ. Assume dL(y1,y2) = δ then y1 is
obtained by deleting δ symbols from y2. That is, there exists a set
of indices U ⊆ [|y2|] such that |U | = δ and (y2)[|y2|]\U = y1.
Let U ′ ⊆ U be a set of indices such that |U ′| = |y2| − n. It can
be easily verified that

(y2)[|y2|]\U ′ ∈ ID(y1,y2, n)

and hence, ID(y1,y2, n) 6= ∅.
For the other direction, assume dL(y1,y2) > δ and assume to

the contrary that there exists x ∈ Σnq such that x ∈ ID(y1,y2, n).
In this case, x can be obtained from y2 by |y2| − n deletions
and y1 can be obtained from x by n− |y1| deletions, which is a
contradiction since dL(y1,y2) > δ.

According to Lemma 1, it is assumed in the rest of the paper
that y1 is a subsequence of y2. The goal of this paper is to study
the following problems.

Problem 1. Given integers n1 ≤ n ≤ n2, find the maximum
intersection size, i.e., maxy1∈Σn1

q ,y2∈Σn2
q
|ID(y1,y2, n)|.

Problem 2. Given integers n1 ≤ n ≤ n2, find the expected
intersection size for only nonempty intersections,

E
y1∈Σn1

q ,y2∈Σn2
q

y1 is a subsequence of y2

[|ID(y1,y2, n)|] .

Problem 3. Given y1,y2 ∈ Σ∗q and an integer n such that |y1| ≤
n ≤ |y2|, find the size of ID(y1,y2, n).

Problem 4. Given y1,y2 ∈ Σ∗q and an integer n such that
|y1| ≤ n ≤ |y2|, find efficient algorithms to calculate the set
ID(y1,y2, n).

III. MAXIMAL INTERSECTION OF BINARY INSERTION AND
DELETION BALLS

In this section, we fully solve Problem 1 for the binary case,
i.e., the case where y1 ∈ Σn1

2 and y2 ∈ Σn2
2 .

Theorem 1. For integers 0 ≤ t1 ≤ n, 0 ≤ t2, and q = 2 we have
that

max
y1∈Σ

n−t1
2 ,y2∈Σ

n+t2
2

|ID(y1,y2, n)| =
min{t1,t2}∑

i=0

(
n

i

)
.

Proof: Let y1 ∈ Σn−t1q ,y2 ∈ Σn+t2
q . If t1 ≥ t2, we have

that

|ID(y1,y2, n)|= |It1(y1) ∩Dt2(y2)| ≤ |Dt2(y2)| ≤
t2∑
i=0

(
n

i

)
,

where the last inequality is proven in [10]. To see that the upper
bound is tight, let y2 be an alternating segment of length n+ t2
and let y1 be the word that is obtained by deleting the last t1 +t2
symbols of y2. Note that y1 is an alternating segment of length
n−t1. By [6], |Dt2(y2)| =

∑t2
i=0

(
n
i

)
. In addition, any deletion in

any word can decrease the number of runs by at most 2. Hence,
for each x ∈ Dt2(y2), ρ(x) ≥ n + t2 − (t1 + t2) = n − t1.
In this case it is possible to show that we can delete t1 more
bits in x (one has to distinguish between the cases whether x
and y1 start with the same bit) in order to receive y1, that is, x
is a supersequence of y1 and hence x ∈ ID(y1,y2, n), which
implies that |ID(y1,y2, n)| =

∑t2
i=0

(
n
i

)
.

The case t1 < t2 is proved in a similar way using the insertion
ball of y1 in order to upper bound the size of |ID(y1,y2, n)|.

IV. THE INTERSECTION OF 1-DELETION BALL AND
1-INSERTION BALL

This section is focused on Problem 3 and presents an explicit
characterization of the intersection of 1-deletion and 1-insertion
balls. Using these results, we solve Problems 1 and 4 for the case
where the balls’ radius is one.

Since this section is focused on the specific case where y1 ∈
Σn−1
q ,y2 ∈ Σn+1

q , and dL(y1,y2) = 2, it holds that y1 can be
obtained from y2 by exactly 2 deletions. The following lemma
states the possible options to receive y1 by deletions from y2.
Lemma 2. y1 can be obtained from y2 either by deleting two
symbols from the same run, or by deleting them from two distinct
runs, but not both.

The next definition will be used in characterizing the intersec-
tion size ID(y1,y2, n).

Definition 2. Let R : Σn−1
q × Σn+1

q → {0, 1, 2} be defined as
follows,

R(y1,y2) ,


0 dL(y1,y2) > 2

1 dL(y1,y2) = 2 and y2
1−→ y1

2 dL(y1,y2) = 2 and y2
2−→ y1,

where y2
i−→ y1 denotes the case where y1 can be obtained from

y2 by deletion(s) from i run(s).

Lemma 1 states that if R(y1,y2) = 0, then ID(y1,y2, n) = ∅.
The size of ID(y1,y2, n) when R(y1,y2) = 1 is given in the
following lemma.

Lemma 3. For y1 ∈ Σn−1
q ,y2 ∈ Σn+1

q , if R(y1,y2) = 1 then
ID(y1,y2, n) = 1.

Proof: Since R(y1,y2) = 1, there exists an index 1 ≤ i ≤
ρ(y2) such that two symbols can be deleted from the i-th run
of y2 to obtain y1. It can be verified that the only word in
ID(y1,y2, n) is the word obtained from y2 by deleting one
symbol from its i-th run.

To analyze the case where R(y1,y2) = 2 we need to consider
whether y1 can be obtained from y2 by deleting two consecutive
runs or not. This will be done using the next definition.

Definition 3. Let A : Σn−1
q × Σn+1

q → {0, 1, . . . , n − 1} be
defined as follows. If y1 can be obtained from y2 by deleting
two consecutive symbols and shortening a maximal alternating
segment of m symbols in y2 to a maximal alternating segment of
m−2 symbols in y1 then A(y1,y2) = m−2, and A(y1,y2) = 0
otherwise.

For example, let y1 = 010001011 and y2 = 01000101011.
y1 can be obtained from y2 by deleting two consecutive sym-
bols in the highlighted maximal alternating segment and hence
A(y1,y2) = 6− 2 = 4.

Lemma 4. Let y1 ∈ Σn−1
q and y2 ∈ Σn+1

q be two words.
If |ID(y1,y2, n)| > 2 then A(y1,y2) > 0.

Proof: Let y1,y2 be two words such that |ID(y1,y2, n)| >
2. Lemma 3 implies that R(y1,y2) = 2 and hence, there exist
two indices i < j such that y1 is obtained from y2 by deleting
one symbol from the i-th run and one symbol from the j-th run
of y2. Let D1(y2) = {x1,x2, . . . ,xρ(y2)}, where xk denotes the

word obtained by deleting a symbol from the k-th run of y2. It
is clear that xi,xj are always supersequences of y1, since xj is
obtained by lengthening the run in y1 corresponding to the i-th
run in y2, and vice versa. Since |ID(y1,y2, n)| > 2, there exists
an index ` 6= i, j such that x` is a supersequence of y1. For
1 ≤ k ≤ ρ(y2), let σk be the symbol of the k-th run of y2 and
rk is its length, i.e.,

y2 = σr11 · · ·σ
ri−1

i−1 σ
ri
i σ

ri+1

i+1 · · ·σ
rj−1

j−1 σ
rj
j σ

rj+1

j+1 · · ·σ
rρ(y2)

ρ(y2) ,

y1 = σr11 · · ·σ
ri−1

i−1 σ
ri−1
i σ

ri+1

i+1 · · ·σ
rj−1

j−1 σ
rj−1
j σ

rj+1

j+1 · · ·σ
rρ(y2)

ρ(y2) ,

where σ0 is defined to be the empty word. First, we prove that
` < i. Assume to the contrary that i < `, we have that,

x` = σr11 · · ·σ
ri−1

i−1 σ
ri
i · · ·σ

r`−1
` · · ·σrρ(y2)

ρ(y2) .

If ri > 1 or σi−1 6= σi+1 then y1,x` are equal up to the (i−1)-th
run and the i-th run of x` is longer than the i-th run of y1 (if
exists) by one. Hence, y1 must be obtained from x` by deleting
a symbol from the i-th run. Otherwise, we have that ri = 1,
σi−1 = σi+1 and y1,x` are equal up to the (i − 2)-th run and
the (i−1)-th run of y1 is longer than the (i−1)-th run of x` by
ri+1. It can be verified that since x` is a supersequence of y1, y1

must be obtained from x` by deleting a symbol from the i-th run,
as before. Hence, y1 can be obtained from y2 by deleting one
symbol from the i-th run and one more symbol, either from the
j-th run or from the `-th run. Since y1 can be obtained from xi
by deleting a symbol from the j-th or the `-th run (with respect
to their indices in y2), it holds that the j-th and the `-th run of
y2 are combined to a single run in xi. This implies that either
j < i or ` < i which is a contradiction.

Next, since ` < i we have that

x` = σr11 · · ·σ
r`−1

`−1 σ
r`−1
` · · ·σrii · · ·σ

rρ(y2)

ρ(y2) ,

y1 = σr11 · · ·σ
r`−1

`−1 σ
r`
` · · ·σ

ri−1
i σ

ri+1

i+1 · · ·σ
rρ(y2)

ρ(y2) .

If r` > 1 or σ`−1 6= σ`+1, then y1,x` are equal up to the (`−1)-
th run and the `-th run of y1 is longer than the `-th run of x` (if
exists) by one. Hence, y1 must be obtained from x` by deleting
a symbol from the (`+ 1)-th run, which must be of length one.
Hence

σ`σ`+1 · · ·σri−1
i = σ`+2σ`+3 · · ·σrii σi+1

and it can be verified that the last symbol of the `-th run and
the first symbol of the i-th run are part of the same alternating
segment of y2. If i > `+ 1 then this is an alternating segment of
length three or more and by definition A(y1,y2) > 0. Otherwise,
i = ` + 1, and y1 is obtained from x` by deleting one symbol
from the i-th run and one symbol either from the j-th or from the
`-th run of y2. The latter can be hold only if i = `+ 1, j = `+ 2
and σ` = σj which implies that A(y1,y2) > 0. Otherwise, we
have that r` = 1, σ`−1 = σ`+1 and y1,x` are equal up to the
(` − 2)-th run and the (` − 1)-th run of x` is longer than the
(` − 1)-th run of y1 by r`+1. Since x` is a supersequence of
y1, y1 must be obtained from x` by deleting a symbol from the
(`+ 1)-th run, and by similar arguments, A(y1,y2) > 0.

The following lemma is an immediate result of Lemma 4.

Lemma 5. Let y1 ∈ Σn−1
q and y2 ∈ Σn+1

q be two words. If
R(y1,y2) = 2 and A(y1,y2) = 0 then ID(y1,y2, n) = 2.

The last case for y1 and y2 is handled in the next lemma.

Lemma 6. Let y1 ∈ Σn−1
q and y2 ∈ Σn+1

q be two words. If
R(y1,y2) = 2 and A(y1,y2) = m− 2 then ID(y1,y2, n) = m.

Proof: By definition, y1 can be obtained from y2 by deleting
two consecutive symbols from a maximal alternating segment of
length m. Denote by j, j + 1, . . . , j + m − 1 the indices of the
runs which correspond to this maximal alternating segment. Let
D1(y2) = {x1,x2, . . . ,xρ(y2)}, where xi is obtained from y2

by deleting one symbol from the i-th run of y2. It can be verified
that for any i ∈ {j, . . . , j +m− 1}, y1 can be obtained from xi
by deleting a symbol from the (i−1)-th run or the (i+ 1)-th run
of xi (the one that is part of the maximal alternating segment).
Hence xi ∈ ID(y1,y2, n). Otherwise, i /∈ {j, . . . , j + m − 1}.
Assume to the contrary that xi is a supersequence of y1. By
similar arguments to those presented in the proof of Lemma 4, it
can be concluded that one of the symbols in the i-th run of y2

is part of the same alternating segment as the j-th run, which is
a contradiction.

Theorem 2. For any two words y1 ∈ Σn−1
q and y2 ∈ Σn+1

q , we
have that

ID(y1,y2, n) = R(y1,y2) +A(y1,y2).

Proof: If dL(y1,y2) > 2 then by the definitions of R,A we
have that ID(y1,y2, n) = 0. Otherwise, by Corollary 2 it holds
that either y2

1−→ y1 or y2
2−→ y1. If y2

1−→ y1 then by Lemma 3,
ID(y1,y2, n) = 1 and by the definitions of R,A,

R(y1,y2) +A(y1,y2) = 1 + 0 = 1

Lastly, if y2
2−→ y1 then the result follows from Lemma 5 and

Lemma 6.

Corollary 1. For any two integers n, q > 1 we have that

max
y1∈Σn−1

q ,y2∈Σn+1
q

|ID(y1,y2, n)| = n+ 1.

Note that the latter corollary is a generalization of Theorem 1
for any q ≥ 2, where the balls’ radius is one. Lastly, using
Theorem 2, it is possible to calculate the expected size of the
set ID(y1,y2, n). The result is given in the next theorem.

Theorem 3. For any two integers n, q > 1 we have that

E
y1∈Σn−1

q ,y2∈Σn+1
q

y1 is a subsequence of y2

[|ID(y1,y2, n)|]=2− q

1+(q−1)(n+1)+(q−1)2
(
n+1

2

) .
V. EFFICIENT ALGORITHM COMPUTING THE INTERSECTION

OF INSERTION AND DELETION BALLS

In this section, we address Problem 4 and present an efficient
algorithm that given y1 ∈ Σn−t12 , y2 ∈ Σn+t2

2 , and n calculates
|ID(y1,y2, n)|. A naive method to calculate this intersection is
to compute these two balls, i.e., It1(y1) and Dt2(y2), and then
calculate their intersection. However, since the calculation of
the balls is done recursively, this approach will introduce high
complexity1. The algorithm described in this section is based on
dynamic programming, and hence works more efficiently.

The following additional definitions will be use throughout
the section. A sequence x is called a common subsequence of
some words y1, . . . ,yt if x is a subsequence of each one of
these t words. The set of all common subsequences of y1, . . . ,yt
is denoted by CS(y1, . . . ,yt) and LCS(y1, . . . ,yt) denotes the
length of the longest common subsequence (LCS) of y1, . . . ,yt,
that is, LCS(y1, . . . ,yt) = maxx∈CS(y1,...,yt)

{|x|}. The set of

1since the size of In−|y1|(y1) is Θ(|y1|n−|y1|) and the largest size of
D|y2|−n(y2) is Θ(|y2||y2|−n), the worst case complexity of this solution is
Θ(n|y2|−|y1|+1) = Θ(nt1+t2+1).

all shortest common subsequences of y1, . . . ,yt is denoted by
LCS(y1, . . . ,yt).

Let us denote by U(y1,y2) the set of index sets U such that
the projection of y2 on the index set U yields y1, that is,

U(y1,y2) = {U ⊆ [|y2|] : (y2)U = y1} .

We say that an index set U is a right-most index set of a sequence
x if all the indices of U are the right most indices in their run in
y, i.e., for all i ∈ U , either i is the right most index of its run in y,
or i+1 ∈ U . Furthermore, denote by Uright(y1,y2) ⊆ U(y1,y2)
the set of all right-most index sets of y2 in U(y1,y2)2. We next
show how to exhaustively and efficiently scan all vectors in the
set ID(y1,y2, n). This will be done by first considering the right-
most index sets of y2 that their projection yields y1 and then
complete them with an arbitrary set of indices on the remaining
set of indices to receive a length-n word in ID(y1,y2, n).

Theorem 4. It holds that
ID(y1,y2, n)

= {(y2)U∪V :U ∈ Uright(y1,y2), V ⊆ [|y2|] \U, |V | = n− |U |} .

Proof: Let U ∈ Uright(y1,y2). By definition, (y2)U = y1.
Hence, y1 is a subsequence of (y2)U∪V . In addition, since U ∪
V ⊆ [|y2|], y2 is a supersequence of (y2)U∪V . That is, y2 can
be obtained from (y2)U∪V by |y2| − |U ∩ V | insertions and y1

can be obtained from (y2)U∪V by |V | deletions. Namely, that is
to say that (y2)U∪V ∈ ID(y1,y2, n).

For the other direction, let x ∈ ID(y1,y2, n) be a sequence.
By definition, x is a subsequence of y2. Hence, there is a set
of indices T ⊆ [|y2|] such that (y2)T = x. Let the number of
indices in T that are contained in the i-th run of y2 be denoted
by T (i) and let T ′ be the index set that consists of the T (i) right-
most indices of the i-th run of y2 for 1 ≤ i ≤ r(y2). Then. it
holds that (y2)T ′ = x. In addition, since y1 is a subsequence of
x = (y2)T ′ , there is a set of indices U ⊆ T ′ such that (y2)U =
y1. Since the indices in T ′ are the right-most indices of each run
of y2, there is an index set U ′ ⊆ T ′ that consists of the U(i)
right-most indices of the i-th run of y2 for 1 ≤ i ≤ ρ(y2) and
satisfies (y2)U ′ = y1, where ρ(y2) denotes the number of runs
in y2. That is, U ′ ∈ Uright(y1,y2) and for V = T ′\U ′ we have
that (y2)U ′∪V = (y2)T ′ = x.

Using Theorem 4 we have the following algorithm for the
calculation of the intersection ID(y1,y2, n),

Algorithm 1 ID(y1,y2, n)

Input: y1,y2, n
Calculate Uright(y1,y2)
Set S = ∅
for each U ∈ Uright(y1,y2) do

for each V ⊆ [|y2|] \U such that |V | = n− |U | do
Calculate x = (y2)U∪V
Set S = S ∪ {x}

Return S

Notice that replacing any index in j ∈ V with an index
j′ ∈ [|y2|] \ (U ∪ V) from the same run of y2 has no affect
on (y2)U∪V . That is, (y2)U∪V = (y2)U∪(V \{j})∪j′ for any two
indices j, j′ /∈ U such that j ∈ V, j′ /∈ V and j, j′ belong to the

2Not to be confused with the right canonical embedding (also called canonical
embedding) presented in [3]. The right canonical embedding is defined as the
embedding that consists of the largest possible indices, and note that the canonical
embedding is unique.

same run in y2. Hence, in the second for loop of Algorithm 1, it
is sufficient to iterate only over indices sets V that differ in the
number of indices from the same run.

It is left to calculate the sets of index sets Uright(y1,y2). The
algorithm to calculate Uright(y1,y2) is based on the dynamic
programming implementation of the LCS problem [7], which is
shortly explained next. Given two words x,y, let LCS(i, j) denote
the length of the LCS of x[i] and y[j]. The length of the LCS
of x and y is given by LCS(|x|, |y|) and is computed using the
following recursive formula

LCS(i, j) =


0 i = 0 or j = 0

1 + LCS(i− 1, j − 1) x(i) = y(j)

max{LCS(i− 1, j), LCS(i, j − 1)} otherwise

The implementation of this computation is done using a
(|x| + 1) × (|y| + 1) matrix, which is referred as the dynamic
programming table, where the j-th entry of the i-th row of the
dynamic programming table quals to LCS(i, j).

The calculation of the set of index sets in Uright(y1,y2) will
also be done using the (|y1|+ 1)× (|y2|+ 1) dynamic program-
ming table. Observe that under the problem specifications, y1 is
a subsequence of y2, and thus it holds that LCS(y1,y2) = {y1}
and thus LCS(|y1|, |y2|) = |y1|. Therefore, there exists at least
one index set U such that (y2)U = y1. However, in order to find
all such right-most index sets, the idea is to search within the
dynamic programming table, in order to identify these index sets
U which consist of only the right-most indices of each run of y2

and satisfy (y2)U = y1.
In order to search such index sets U within the dynamic

programming table in an efficient way, we use some of its
properties. First, note that the size of each such set U is |y1|.
Let U = {i1, i2, . . . , i|y1|}, since (y2)U = y1, the j-th entry
of the ij-th column of the dynamic programming table equals
to j. By the above, the column that corresponds to the ij-th
index contains the value j in the j-th entry, and the ij-th index
represents the appearance of the j-th symbol of y1 in y2. Since
each selected index ij corresponds to the j-th symbol of y1,
which corresponds to the j-th row of the dynamic programming
table, the selection of ij allows us to eliminate the j-th row of
the dynamic programming table from the rest of the search. We
choose the indices of U in a backward order, and by doing so
each selection of index reduces the number of rows by one in the
matrix we need to search in the rest of the algorithm.

Before we present the explicit algorithm to compute the set
Uright(y1,y2), let us introduce a few data structures that will be
used in the algorithm.

1) A two-dimensional array, called match, such that
match(i, j) = 1 if y1[i] = y2[j] and otherwise 0.

2) A two-dimensional array LCS, which is the dynamic pro-
gramming table of the LCS algorithm.

3) A binary vector curr of length |y2|. The set of non-
zero entries of curr correspond to the indices in a set
U ∈ Uright(y1,y2) in the current step of the search.

By using the above characterization, we design the following re-
cursive procedure, presented in Algorithm 2, in order to calculate
the set Uright(y1,y2). Algorithm 2 is initially invoked with the
sequences y1 and y2, the indices i = |y1|, j = |y2|, and the all
zero vector curr.

The next example demonstrates the idea of Algorithm 2.

Algorithm 2 The calculation of Uright
Input: y1, y2, i, j and a pointer to curr
Uright = ∅.
if i = 0 or j = 0 then
Uright ← {curr} ∪ Uright
Return Uright

if LCS(i, j) < i then
Return Uright

if match(i, j) = 1 and (j = n or y2[j] 6= y2[j−1] or curr[j] =
1) then

Set curr[j − 1]← 1
Uright ← Uright ∪ Algorithm 2(curr,y1,y2, i− 1, j − 1)
Set curr[j − 1]← 0

if LCS(i, j − 1) = i then
Uright ← Uright ∪ Algorithm 2(curr,y1,y2, i, j − 1)

Return Uright.

Example 1. Consider the example shown in Fig. 1, in which
y1 = 0010 and y2 = 000111010 and each table is the dynamic
programming table. The four highlighted columns in each table
correspond to one set of indices U ∈ Uright.

Fig. 1: An example of Algorithm 2 for y1 = 0010 and
y2 = 000111010, so LCS(y1,y2) = 4. The highlighted
columns represent the right-most index sets U ∈ Uright(y1,y2).
More specifically, theses sets, ordered in a clockwise manner, are:
{3, 7, 8, 9}, {2, 3, 6, 9}, {2, 3, 8, 9}, {2, 3, 6, 7}.

Theorem 5. Let y1 and y2 be two sequences such that |y1| ≤
|y2|. The output of Algorithm 2 is Uright(y1,y2) if y1 is a
subsequence of y2, and is ∅ otherwise.

Proof: Let Uright denote the output of Algorithm 2 for an
input of y1 and y2, i.e.,

Uright = Algorithm 2(curr,y1,y2, |y1| , |y2|).

If y1 is not a subsequence of y2 it must be that 1 ≤ |y1|, and
by the assumption, |y1| ≤ |y2|. Thus, the first if condition does
not hold. Also, it must be that LCS(|y1| , |y2|) < |y1|, so the
algorithm output is Uright = ∅.

Let us assume that y1 is a subsequence of y2. First, we will
prove that Uright ⊆ Uright(y1,y2). At the initialization i ≤ j
and in each recursive call we can decrease both i and j by one
or only decrease j by one. Since the latter is possible only if
i = LCS(i, j − 1) ≤ min{i, j − 1} ≤ j − 1, it holds that i ≤ j
throughout the run of the algorithm. For convenience, we consider
the vector curr to be the index set U := {j | curr[j − 1] = 1} it
represents. An index set U is inserted to Uright only when the first
if condition holds, that is, only if i = 0 or j = 0 and since i ≤ j,
that is, whenever i = 0. By the definition of the algorithm, i and
U can only be changed when the third if condition holds. In this
case, j is inserted to U and i and j are decreased by one. Thus,
if i = 0, U must contain |y1| indices j1, . . . , j|y1| and by the

n The Naive Algorithm Algorithm 1
50 1558 6.37
75 10449 6.79

100 44652 8.38
125 > 88000 9.46

TABLE I: A comparison of the run time (in seconds) of Algorithm 1
and the naive algorithm to compute ID(y1,y2, n).

third condition each ji satisfies (y1)i = (y2)ji . Therefore, each
index set U in the output satisfies y1 = (y2)U which implies that
Uright ⊆ U(y1,y2).

Let U ∈ Urignt, and denote by j1 < j2 < · · · < j|y1|
the indices in U . Since (y2)U = y1, for 1 ≤ i ≤ |y1| it
holds that (y2){ji,...,j|y1|} = (y1)[i : |y1|]. We will prove, by
backward induction that {j1, . . . , j|y1|} is a right-most index
set. For i = |y1|, if j|y1| = |y2| it is clearly a right-most
index set. Otherwise, due to the fact that j|y1| was inserted into
U in the third if condition of the algorithm, it must be that
(y2)j|y1|

6= (y2)j|y1|+1 (it can not be that j|y1| + 1 ∈ U since
U is empty). Thus, j|y1| is the right-most index in its run in
y2 and {j|y1|} is a right-most index set. Let us assume that
{ji+1, . . . , j|y1|} is a right-most index. Similarly to the base case,
ji was inserted into U in the third if condition. Hence, it must
be that (y2)ji 6= (y2)ji+1 or that ji + 1 ∈ U ′ where U ′ is
the subset of U in the current step of the algorithm. By the
induction assumption {ji+1, . . . , j|y1|} is a right-most index set
and if (y2)ji 6= (y2)ji+1, then ji is the right-most index in its run
and {ji, ji+1, . . . , j|y1|} is also a right-most index set. Otherwise,
ji and ji+1 belong to the same run of y2 and ji+1 ∈ U ′. By the
induction assumption all the indices that are greater than ji + 1
and belong to the same run as ji + 1 are also in U ′, that is, all
the indices that are right to ji and at the same run are in U ′ and
{ji, ji+1, . . . , j|y1|} is a right-most index set by definition. We
have proven that each index set U ∈ Uright is a right-most index
set, that is, we have proven that Uright ⊆ Uright(y1,y2).

To see that Uright(y1,y2) ⊆ Uright consider some index set
U ∈ Uright(y1,y2) and let j1 < · · · < j|y1| be the indices in U .
Since U ∈ Uright(y1,y2), for each i and j ≥ ji we have that
LCS(i, j) = i, that is, the fourth condition holds. Consider the
path that invokes the first recursive call if and only if j = ji for
some index 1 ≤ i ≤ |y1|, and invokes the second recursive call
otherwise. Since U is a right-most index set, one can easily verify
that this is a valid path of the algorithm that yields the index set
U and append it to the algorithm output Uright.

We used simulations to evaluate the performance of Algo-
rithm 1. Our simulations worked on 4 different values of n =
{50, 75, 100, 125}. For each n, we created 5, 000 test cases as
follows. First, the values of t1 and t2 were generated according
to the standard normal distribution with mean µ = 4 and standard
deviation of σ = 0.5. Next, y2 was selected randomly from all
the sequences of length n+ t2. Then, t2 + t1 bits were selected
randomly and deleted from y2 to create y1. We then performed
Algorithm 1 and the naive algorithm (described in the begining
of this section) to compute ID(y1,y2, n) and evaluated their run
time. Both algorithms were implemented in c++ and performed
on our server with Intel(R) Xeon(R) CPU E5-2630 v3 2.40GHz.
In all of the tests Algorithm 1 performed the computation of
ID(y1,y2, n) significantly faster and improve the speed of the
naive algorithm by a factor of more than 5, 000. The results of
the tests are summarized in Table I. Note that we performed the
comparison over relatively small values of the parameters due to
the limitations of the naive algorithm.

REFERENCES

[1] M. Abu-Sini and E. Yaakobi, “On Levenshtein’s reconstruction problem
under insertions, deletions, and substitutions,” under revision to IEEE
Transactions on Information Theory.

[2] D. Bar-Lev, T. Etzion, and E. Yaakobi, “On Levenshtein balls with radius
one,” to appear IEEE International Symposium on Information Theory,
Melbourne, Australia, Jul. 2021.

[3] C. Elzinga, S. Rahmann, and H. Wang. Algorithms for subsequence
combinatorics. Theoretical Computer Science, 409(3):394–404, 2008.

[4] R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion
channel”, IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2924–
2931, Apr. 2018.

[5] T. Hayashi and K. Yasunaga, “On the list decodability of insertions and
deletions,” IEEE International Symposium on Information Theory, pp. 86–
90, Vail, CO, Jun. 2018.

[6] D. S. Hirschberg, “Bounds on the number of string subsequences,” Annual
Symposium on Combinatorial Pattern Matching, pp. 115–122, 1999.

[7] S. Y. Itoga, “The string merging problem,” BIT Numerical Mathematics, vol.
21, no. 1, pp. 20–30, 1981.

[8] T. Jiang and A. Vardy, “Asymptotic improvement of the Gilbert-Varshamov
bound on the size of binary codes,” IEEE Transactions on Information
Theory, vol. 50, no. 8, pp. 1655–1664, Aug. 2004.

[9] V. Junnila, T. Laihonen, and T. Lehtilä, “The Levenshtein’s channel and
the list size in information retrieval,” IEEE International Symposium on
Information Theory, pp. 295–299, Paris, France, Jul. 2019.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” in Doklady Akademii Nauk, vol. 163, no. 4. Russian
Academy of Sciences, 1965, pp. 845–848.

[11] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Transactions
on Information Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[12] V. I. Levenshtein, “Efficient reconstruction of sequences from their subse-
quences or supersequences,” Journal of Combinatorial Theory, Series A,
vol. 93, no. 2, pp. 310–332, 2001.

[13] S. Liu, I. Tjuawinata, and C. Xing, “On list decoding of insertion and
deletion errors,” https://arxiv.org/abs/1906.09705, 2019.

[14] O. Sabary, E. Yaakobi, and A. Yucovich, “The error probability of maximum-
likelihood decoding over two deletion/insertion channels,” IEEE Interna-
tional Symposium on Information Theory, pp. 763–768, Los Angeles, CA,
USA, June. 2020.

[15] F. Sala and L. Dolecek, “Counting sequences obtained from the synchro-
nization channel,” IEEE International Symposium on Information Theory,
pp. 2925–2929, Istanbul, Turkey, Jul. 2013.

[16] F. Sala, R. Gabrys, and L. Dolecek, “Gilbert-Varshamov-like lower bounds
for deletion-correcting codes,” IEEE Information Theory Workshop, Hobart,
TAS, pp. 147–151, 2014.

[17] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction from
insertions in synchronization codes,” IEEE Transactions on Information
Theory, vol. 63, no. 4, pp. 2428–2445, Jan. 2017.

[18] A. Wachter-Zeh, “List decoding of insertions and deletions,” IEEE Trans-
actions on Information Theory, vol. 64, no. 9, pp. 6297–6304, 2017.

[19] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval in
associative memories,” IEEE Transactions on Information Theory, vol. 65,
no. 4, pp. 2155–2165, Apr. 2018.

[20] Y. Yehezkeally and M. Schwartz, “Uncertainty of reconstructing multiple
messages from uniform-tandem-duplication noise,” IEEE International Sym-
posium on Information Theory, pp. 126–131, Los Angeles, CA, USA, June.
2020.

