Project in 236379

28.2.2021

Staff: Associate Professor Eitan Yaakobi Daniella Bar-Lev

Students: Raïssa Nataf Tomer Tsachor In this project we define an optimal decoder for the 1-Insertion channel. Assumptions on the channel: a bit 0 or 1 is added (each one with probability 0.5) in a random position (with equal probability). We show that among all the decoders that keep the output channel length (n + 1) the lazy decoder is preferable over any other decoder. We then define a decoder that is optimal when the output of the decoder may be of any length.

Definition 0. We define the decoder $\mathcal{D}_{Lazy} : (\Sigma_2)^{n+1} \to (\Sigma_2)^{n+1}$:

 $\mathcal{D}_{Lazy}(y) = y.$

Lemma 1. The average decoding error probability of the lazy decoder \mathcal{D}_{Lazy} under the 1-insertion channel 1-Ins is $P_{err}(1\text{-Ins}, \mathcal{C}, \mathcal{D}_{Lazy}, d_L) = \frac{1}{n}$.

Proof: The average decoding error probability of the lazy decoder for each codeword c is calculated as follows:

 $\begin{aligned} P_{err}(c,d_L) &= \Sigma_{y:\mathcal{D}_{Lazy}(y)\neq c} \frac{d_L(\mathcal{D}_{Lazy}(y),c)}{|c|} p(y|c) = \Sigma_{y\in I_1(c)} \frac{1}{n} p(y|c) = \frac{1}{n} \\ \text{Since this is true for every } c \in \mathcal{C}, \text{ we get that } P_{err}(1\text{-Ins},\mathcal{C},\mathcal{D}_{Lazy},d_L) = \frac{1}{n} \cdot |\mathcal{C}| \cdot \frac{1}{|\mathcal{C}|} = \frac{1}{n} \blacksquare . \end{aligned}$

We can now show that the lazy decoder is preferable, with respect to the average decoding error probability, over any decoder that outputs a word of the same length as its input.

Lemma 2. Let $\mathcal{D} : (\Sigma_2)^{n+1} \to (\Sigma_2)^{n+1}$ be a general decoder that preserves the channel's output length. It follows that

 $P_{err}(1\text{-Ins}, \mathcal{C}, \mathcal{D}, d_L) \ge P_{err}(1\text{-Ins}, \mathcal{C}, \mathcal{D}_{Lazy}, d_L),$

and for $\mathcal{C} = (\Sigma_2)^n$ equality is obtained if and only if $\mathcal{D}_{Lazy} = \mathcal{D}$.

Proof: Equality is trivial when $\mathcal{D}_{Lazy} = \mathcal{D}$. Furthermore, since for every $y \in \mathcal{C}$ it holds that $|\mathcal{D}(y)| = n + 1$, it is deduced that $d_L(c, \mathcal{D}(y)) \geq 1$. Hence, similarly to the proof of Lemma 1, it is easy to verify that

 $P_{err}(1-\text{Ins}, \mathcal{C}, \mathcal{D}, d_L) \geq \frac{1}{n} = P_{err}(1-\text{Ins}, \mathcal{C}, \mathcal{D}_{Lazy}, d_L)$

where the last equality follows from Lemma 1.

Let us now assume that $\mathcal{D} \neq \mathcal{D}_{Lazy}$, i.e., there exists $z \in (\Sigma_2)^{n+1}$ such that $\mathcal{D}(z) = z' \neq z$.

Since $z' \neq z$ we get that $D_1(z') \neq D_1(z)$, i.e., there exists a word $c \in (\Sigma_2)^n$ such that $c \in D_1(z)$ and $c \notin D_1(z')$. Equivalently, $z \in I_1(c)$ and $z' \notin I_1(c)$ and so $d_L(c, z') \geq 3$ (at least one more insertion and one more deletion are needed in addition to the deletion needed for every word in the insertion ball).

Hence, it is derived that

$$P_{err}(c, d_L) = \sum_{y \in I_1(c)} \frac{d_L(\mathcal{D}(y), c)}{n} p(y|c)$$

$$\geq \sum_{y \in I_1(c) \setminus \{z\}} \frac{1}{n} p(y|c) + \sum_{y \in I_1(c)} \frac{d_L(\mathcal{D}(z) = z', c)}{n} p(y|c)$$

$$> \sum_{y \in I_1(c)} \frac{1}{n} p(y|c) = \frac{1}{n}.$$

If $\mathcal{C} = (\Sigma_2)^n$ it must hold that $c \in \mathcal{C}$, and so

 $P_{err}(1-\operatorname{Ins}, \mathcal{C}, \mathcal{D}, d_L) \geq \frac{|\mathcal{C}|-1}{|\mathcal{C}|} \cdot \frac{1}{n} + \frac{1}{|\mathcal{C}|} P_{err}(c, d_L) > \frac{1}{n}.$

Combining with Lemma 1 again completes the proof. \blacksquare

Before examining the performance of the embedding number decoder, we first discuss its properties over the 1-insertion channel. It is first shown that a decoder that shortens an arbitrary run of maximal length within the input word is equivalent to the embedding number decoder.

Lemma 3. Given $y \in (\Sigma_2)^{n+1}$, the word $\hat{x} \in (\Sigma_2)^n$ obtained by reducing a run of maximal length in y satisfies $\operatorname{Emb}(\hat{y}; x) = \max_{x \in \Sigma_2^n} \{\operatorname{Emb}(y; x)\}.$

Proof: Let y be a word with n_r runs of lengths $r_1, r_2, ..., r_{n_r}$. Let $y_i \ 1 \le i \le n_r$, be the word obtained from y by reducing the i_{th} run by one, and so $\operatorname{Emb}(y; x_i) = r_i$. Hence, it follows that $\arg \max_{1 \le i \le n_r} \{\operatorname{Emb}(y; x_i)\} = \arg \max_{1 \le i \le n_r} \{r_i\}$.

Definition 4. The embedding number decoder \mathcal{D}_{EN} shortens the first run of maximal length in y by one. A decoder \mathcal{D} that shortens one of the runs of maximal length in y by one is said to be equivalent to the embedding number decoder, and is denoted by $\mathcal{D} \equiv \mathcal{D}_{EN}$.

Lemma 5. Let $\mathcal{D}: (\Sigma_2)^{n+1} \to (\Sigma_2)^n$ be a general decoder that reduces the input length by one. It follows that $P_{err}(1\text{-Ins}, \mathcal{C}, \mathcal{D}, d_L) \ge P_{err}(1\text{-Ins}, \mathcal{C}, \mathcal{D}_{EN}, d_L)$.

Proof:

$$\begin{split} P_{err}(1\text{-Ins},\mathcal{C},\mathcal{D},d_{L}) &= \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \sum_{y:\mathcal{D}(y) \neq c} \frac{d_{L}(\mathcal{D}(y),c)}{|c|} p(y|c) \\ (1) &= \frac{1}{|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \sum_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}(y),c)}{|c|} p(y|c) \\ (2) &\stackrel{b}{\geq} \frac{1}{|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \frac{2}{n} \left(\left(\sum_{c \in D_{1}(y)} p(y|c) \right) - p\left(y|\mathcal{D}(y) \right) \right) \\ (3) &= \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \sum_{c \in D_{1}(y)} p(y|c) - \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} p(y|\mathcal{D}(y)) \\ (4) &= \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \sum_{c \in D_{1}(y)} p(y|c) - \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \frac{\operatorname{Emb}(y, \mathcal{D}(y))}{2(n+1)} \\ (5) &= \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \sum_{c \in D_{1}(y)} p(y|c) - \frac{1}{(n+1)n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \operatorname{Emb}(y, \mathcal{D}(y)) \\ (6) &\stackrel{d}{=} \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \sum_{c \in D_{1}(y)} p(y|c) - \frac{1}{(n+1)n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \operatorname{Emb}(y; \mathcal{D}(y)) \\ (7) &\stackrel{e}{=} \frac{2}{n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \sum_{c \in D_{1}(y)} p(y|c) - \frac{1}{(n+1)n|\mathcal{C}|} \sum_{y \in (\Sigma_{2}^{n+1})} \operatorname{Emb}(y; \mathcal{D}_{EN}(y)) \\ (8) &= P_{err}(1\text{-Ins}, \mathcal{C}, \mathcal{D}_{EN}, d_L) \end{split}$$

(4) results from the fact that $p(y|c) = \frac{\frac{1}{2}}{\text{insertion of 0 or 1}} \cdot \frac{1}{\text{possible locations for insertion}} \cdot \text{Emb}(y, c) \blacksquare$ **Definition 6:** We define $\tau(c)$ being the length of c's maximal run.

Remark 7. Let $y \in \Sigma_2^{n+1}$ with n_R runs of length $r_1, r_2, ..., r_{n_R}$ and $c \in D_1(y)$ when we delete 1 bit of the *i*th run. $p(c \text{ transmitted } | y \text{ received}) = \frac{r_i}{n+1}$.

Definition 8. Coward-Safe We define the following decoder: $\mathcal{D}_{CS}: \Sigma_2^{n+1} \to \Sigma_2^{n+1} \cup \Sigma_2^n$

$$\mathcal{D}(y) = \begin{cases} \mathcal{D}_{EN}(y) & \tau(y) > \frac{n+1}{2} \\ \mathcal{D}_{Lazy}(y) = y & else \end{cases}$$

Lemma 9. Assume $c \in \mathcal{C} = \Sigma_2^n$ was transmitted, $y \in \Sigma_2^{n+1}$ was received and the result of the decoder is $x' \in \Sigma_2^{n+1} \cup \Sigma_2^n$. Then $Pr(c = x') > \frac{1}{2} \Leftrightarrow x'$ results from shortening by 1 a run whose length is $> \frac{n+1}{2}$.

Proof: \Leftarrow : Results directly from remark 7.

⇒ Assume x' does not result from shortening by 1 a run whose length is $> \frac{n+1}{2}$. If shortened then directly remark A. Else $Pr(c = x') = 0 < \frac{1}{2}$.

Lemma 10. Assume $C = \Sigma_2^n$. $\sum_{c \in D_1(y)} \frac{d_L(\mathcal{D}_{CS}(y),c)}{|c|} p(c \text{ is transmitted} | y \text{ received}) \leq \frac{1}{n}$ Proof: $\sum_{c \in D_1(y)} \frac{d_L(\mathcal{D}_{CS}(y),c)}{|c|} p(c|y) \leq \frac{1}{n} \left(\mathbb{I}\left\{\tau(y) > \frac{n+1}{2}\right\} \cdot 2 \cdot \frac{1}{2} + \mathbb{I}\left\{\tau(y) \leq \frac{n+1}{2}\right\} \cdot 1 \right) = \frac{1}{n} \blacksquare$ Lemma 11. Let $\mathcal{D} : \Sigma_2^{n+1} \to \Sigma_2^*$ be a general decoder. Then, it holds that $P_{err}(1\text{-Ins}, \Sigma_2^n, \mathcal{D}, d_L) \geq P_{err}(1\text{-Ins}, \Sigma_2^n, \mathcal{D}_{CS}, d_L)$ Proof: We split Σ_2^{n+1} into 3 disjoint sets: $A = \left\{y \in \Sigma_2^{n+1} : |\mathcal{D}(y)| \neq n \right\}, B_{\leq \frac{1}{2}} = \left\{y : |\mathcal{D}(y)| = n \land Pr(\mathcal{D}(y)|_{z})\right\}$

and $B_{>\frac{1}{2}} = \{y : |\mathcal{D}(y)| = n \land Pr(\mathcal{D}(y)|y) > \frac{1}{2}\}.$

• Let $y \in A$.

In this case
$$d_L(c, \mathcal{D}(y)) \ge 1$$
.
 $\sum_{c \in D_1(y)} \frac{d_L(\mathcal{D}(y), c)}{|c|} p(c|y) \ge \frac{1}{n} \cdot \sum_{c \in D_1(y)} p(c|y) = \frac{1}{n} \sum_{\text{Lemma 10}} \sum_{c \in D_1(y)} \frac{d_L(\mathcal{D}_{CS}(y), c)}{|c|} p(c|y)$

• Let $y \in B_{\leq \frac{1}{2}}$:

$$\begin{split} \Sigma_{c\in D_{1}(y)} \frac{d_{L}(\mathcal{D}(y),c)}{|c|} p(c|y) &= \Sigma_{c\in D_{1}(y)\wedge c\neq \mathcal{D}(y)} \frac{d_{L}(\mathcal{D}(y),c)}{|c|} p(c|y) \\ &\geq \frac{2}{n} \cdot \Sigma_{c\in D_{1}(y)\wedge c\neq \mathcal{D}(y)} p(c|y) \\ &= \frac{2}{n} \cdot \Sigma_{c\in D_{1}(y)} Pr(c\neq \mathcal{D}(y)|y) \\ &\geq \frac{2}{n} \cdot \Sigma_{c\in D_{1}(y)} (1-\frac{1}{2}) \\ &\geq \frac{2}{n} \cdot \frac{1}{2} = \frac{1}{n} \\ &\geq \frac{2}{n} \cdot \frac{1}{2} = \frac{1}{n} \\ &\geq \sum_{\text{Lemma 10}} \Sigma_{c\in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y),c)}{|c|} p(c|y) \end{split}$$

• Let $y \in B_{>\frac{1}{2}}$: In this case $\mathcal{D}(y) = \mathcal{D}_{CS}(y)$ according to lemma 9. $\sum_{c \in D_1(y)} \frac{d_L(\mathcal{D}(y),c)}{|c|} p(y|c) = \sum_{c \in D_1(y)} \frac{d_L(\mathcal{D}_{CS}(y),c)}{|c|} p(y|c)$

$$\begin{split} P_{err}(1\text{-Ins}, \Sigma_{2}^{n}, \mathcal{D}, d_{L}) &= \frac{1}{|\mathcal{C}|} \Sigma_{c \in \Sigma_{2}^{n}} \Sigma_{y:\mathcal{D}(y) \neq c} \frac{d_{L}(\mathcal{D}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in (\Sigma_{2}^{n+1})} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in A} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}(y), c)}{|c|} p(c|y) \cdot \frac{p(y)}{p(c)} \\ &+ \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{\leq \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}(y), c)}{|c|} p(c|y) \cdot \frac{p(y)}{p(c)} + \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{> \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &\geq \frac{1}{|\mathcal{C}|} \Sigma_{y \in A} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(c|y) \cdot \frac{p(y)}{p(c)} \\ &+ \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{\leq \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(c|y) \cdot \frac{p(y)}{p(c)} \\ &+ \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{\leq \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in A} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in A} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{\leq \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{\leq \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &= \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{\leq \frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) + \frac{1}{|\mathcal{C}|} \Sigma_{y \in B_{>\frac{1}{2}}} \Sigma_{c \in D_{1}(y)} \frac{d_{L}(\mathcal{D}_{CS}(y), c)}{|c|} p(y|c) \\ &= P_{err}(1\text{-Ins}, \Sigma_{2}^{n}, \mathcal{D}_{CS}, d_{L}) \blacksquare$$