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In this project we define an optimal decoder for the 1-Insertion channel. Assumptions on the
channel: a bit 0 or 1 is added (each one with probability 0.5) in a random position (with equal
probability). We show that among all the decoders that keep the output channel length (n + 1)
the lazy decoder is preferable over any other decoder. We then define a decoder that is optimal
when the output of the decoder may be of any length.

Definition 0. We define the decoder Dy, : (X2)" ™ — (3g)"+h:

Drazy(y) = -

Lemma 1. The average decoding error probability of the lazy decoder Dpr,., under the 1-
insertion channel 1-Ins is P, (1-Ins,C, Drazy, dr) = =.

Proof: The average decoding error probability of the lazy decoder for each codeword c is

calculated as follows:

dr,(Dra» c
PeTT(C7 dL) = Zy:DLazy(y)ic%p(yk) = Eyéh(c) %p(y|0) = % .

Since this is true for every ¢ € C, we get that P.,.(1-Ins,C, Drgsy, dr) = % -|Cl - ﬁ = %l )

We can now show that the lazy decoder is preferable, with respect to the average decoding
error probability, over any decoder that outputs a word of the same length as its input.

Lemma 2. Let D : (35)""™! — (33)"™ be a general decoder that preserves the channel’s
output length. It follows that

P.,.(1-Ins,C,D,dy) > Pery(1-Ins,C, Dpgzy, dr),

and for C = (33)" equality is obtained if and only if Dy, = D.

Proof: Equality is trivial when Dr,., = D. Furthermore, since for every y € C it holds that
|D(y)| = n+ 1, it is deduced that dp (¢, D(y)) > 1. Hence, similarly to the proof of Lemma 1, it is
easy to verify that

P...(1-Ins,C, D,dy) > % = P.,.(1-Ins,C, Dpyzy, dr)

where the last equality follows from Lemma 1.

Let us now assume that D # Dy, 1.e., there exists z € (X2)"*! such that D(z) = 2’ # 2.

Since 2’ # z we get that D;(2') # Di(2), i.e., there exists a word ¢ € (X3)" such that ¢ € D;(z)
and ¢ ¢ Dy(Z'). Equivalently, z € I;(c) and 2’ ¢ I (c) and so dp(c,2’) > 3 (at least one more
insertion and one more deletion are needed in addition to the deletion needed for every word in
the insertion ball).

Hence, it is derived that

dL(D<y>7 C)p

PeTT(C7 dL) = Zyeh(c) (’le)

1
> Eyeh(c)\{z}ﬁp(yfc) + Zyell(c)

1 1
> Eyeh(c)ﬁp(mc) = n

If C = (¥2)" it must hold that ¢ € C, and so



Pepy(1-Ins,C, D, dy) > St - L+ L Po(c,d) > &
Combining with Lemma 1 again completes the proof. |
Before examining the performance of the embedding number decoder, we first discuss its prop-
erties over the l-insertion channel. It is first shown that a decoder that shortens an arbitrary run
of maximal length within the input word is equivalent to the embedding number decoder.
Lemma 3. Given y € (X3)"™!, the word & € (X3)"obtained by reducing a run of maximal
= maXyexy { Emb(y; z)}.
Proof: Let y be a word with n, runs of lengths r,79,...,7,, .

length in y satisfies Emb(y; )
Let y; 1 <1 < n,, be the word
obtained from y by reducing the iy, run by one, and so Emb(y;x;) = r;. Hence, it follows that
arg maxj<;<,, { Emb(y; ;) } = arg maxj<;<p, . {r; }.0

Definition 4. The embedding number decoder Dgy shortens the first run of maximal length
in y by one. A decoder D that shortens one of the runs of maximal length in y by one is said to
be equivalent to the embedding number decoder, and is denoted by D = Dgy.

Lemma 5. Let D : ()" — (X3)" be a general decoder that reduces the input length by
one. It follows that P,..(1-Ins,C,D,dy) > P...(1-Ins,C, Dgy, dy).

Proof:
1 dr,(D(y), c
PET,,«(l—IIlS,C, D, dL) - mzceczyﬂ?(y)#c%p(mc)
1 dr,(D(y), c
(]-) = EZyG(EEHLl)ECEDl(y) %p(yk)

1 2

(2) > e Suecszy s (Seemplule) —p D))

2 2
(3) = n|C| E"+1)266D1 (y| ) ’C’Zye(zg“)p(wD(y))
_ 2 2 Emb(y, D(y))
(4> - n|C| E”+1)206D1 (y’ ) n’C’EyG(E;+1) 2<n+ 1)
2 1
= 1y 2 2 st B D
(5) nlCl (=] 1y &eeDi(y (y’ ) (n + 1)n|C| y6(22+ ) mb(y7 (y))
d 2 1
(6) > —= n\C\ ye(snthSeen (mP(yle) — W yecsyrymax{Emb(e, D(y))}
e 2 1
(1) =2 — n\C\ ye(snty Xee D (mP(Yle) — W yen+yEmb(y; Den (y))

(8> = Perr<1_1nsu Cu DEN; dL)

(4) results from the fact that p(y|c) =

Remark 7. Let y € ¥5*" with np runs of length 1,79, e, T
1 bit of the ¢th run. p(c transmitted |y received) =

L -Emb(y, c)l

1 .
2 n+1

insertion of 0 or 1  possible locations for insertion

Definition 6: We define 7(c¢) being the length of ¢’s maximal run.

and ¢ € D;(y) when we delete

nRr

n+1



Definition 8. Coward-Safe We define the following decoder: Deg : ¥5T — X0 U X2
Din(y) 7(y) > =57

DLazy(y) =Y 6[86
Lemma 9. Assume ¢ € C = X3 was transmitted, y € X5 was received and the result of the

D(y) =

decoder is 2’ € L3 U XS, Then Pr(c = 2’) > 1 < 2/ results from shortening by 1 a run whose
length is > "TH

Proof: <: Results directly from remark 7.

= Assume 2’ does not result from shortening by 1 a run whose length is > ”H If shortened
then direclty remark A. Else Pr(c=12')=0< ;.1

Lemma 10. Assume C = XJ7.

YDy (y) %p(c is transmitted|y received) < &

Proof:

Seeni “OGFHEplely) < L ([{ry) > 22 5+ I{rly) <551} 1) =4

Remar

Lemma 11. Let D : X5 — 3% be a general decoder. Then, it holds that
Pem“(l'lnsa 237 D7 dL) 2 Perr<1'1nsa Zga Dcs, dL)

Proof: We split 5 into 3 disjoint sets: A= {y e 3™ :|D(y)| #n}, B = {y:|D(y)| =nA Pr(D(y)|
andB>%:{y:|D y)|=nA Pr(D > 11
o Let y € A.

In this case dr (¢, D(y)) > 1.
Seep (0 22 Dp(ely) > L Seepplely) =1 > Beep, ) LEEDDp(cly)

Lemma 10

° LetyEBS%:

dr(D(y), c)
EcEDl(y) TP(¢|?/) = EcED1(y)/\c;ﬁD(y) TP(CH/)

: Ec€D1 (y)/\c;éD(y)p(c | y)

+ Beep, (y) Pr(c # D(y)|y)
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SII o33

%
4
o
m
5
S

° LetyEB%:

In this case D(y) = Des(y) according to lemma 9.

dL(?£|y)7C)p<y’C) — dL(DCS(y)vc)p<y’C)

YieeDy(y) YeeDy (y) Ic]
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